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Abstract

This study was conducted to derive receptor-specific outdoor exposure concentrations of total 

suspended particulate (TSP) and respirable (dae ≤ 10 μm) air manganese (air-Mn) for East 

Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air 

measurements were available. Our “site-surface area emissions method” used U.S. Environmental 

Protection Agency’s (EPA) AERMOD (AMS/EPA Regulatory Model) dispersion model and air 

measurement data to estimate concentrations for residential receptor sites in the two communities. 

Modeled concentrations were used to create ratios between receptor points and calibrated using 

measured data from local air monitoring stations. Estimated outdoor air-Mn concentrations were 

derived for individual study subjects in both towns. The mean estimated long-term air-Mn 

exposure levels for total suspended particulate were 0.35 μg/m3 (geometric mean [GM]) and 0.88 

μg/m3 (arithmetic mean [AM]) in East Liverpool (range: 0.014–6.32 μg/m3) and 0.17 μg/m3 (GM) 

and 0.21 μg/m3 (AM) in Marietta (range: 0.03–1.61 μg/m3). Modeled results compared well with 
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averaged ambient air measurements from local air monitoring stations. Exposure to respirable Mn 

particulate matter (PM10; PM <10 μm) was higher in Marietta residents.

Implications—Few available studies evaluate long-term health outcomes from inhalational 

manganese (Mn) exposure in residential populations, due in part to challenges in measuring 

individual exposures. Local long-term air measurements provide the means to calibrate models 

used in estimating long-term exposures. Furthermore, this combination of modeling and ambient 

air sampling can be used to derive receptor-specific exposure estimates even in the absence of 

source emissions data for use in human health outcome studies.

Introduction

Only a few inhalation exposure studies have evaluated nonoccupational, stationary source–

based environmental exposures to manganese (Mn). Although Mn inhalation exposure in the 

general population is much lower than in the occupational setting, these studies also 

identified subtle neurological deficits in residential populations chronically exposed to low 

airborne manganese (air-Mn) levels (Baldwin et al., 1999; Beuter et al., 1999; Bowler et al., 

1999; Lucchini et al., 2012; Menezes-Filho et al., 2011; Mergler et al., 1999; Riojas-

Rodriguez et al., 2010; Rodriguez-Agudelo et al., 2006).

The first account of Parkinsonian symptoms linked to inhalation exposure of Mn was 

documented by Couper (1837). Since then, the epidemiologic literature has established that 

adverse neurological and neuropsychological health effects are associated with chronic 

exposure to excessive airborne manganese (air-Mn) via inhalation. Occupational studies 

have described motor impairment (e.g., psychomotor speed, reaction time, hand-eye 

coordination, postural sway), cognitive deficits (e.g., verbal IQ, working memory), mood 

perturbations (e.g., depression, anxiety), and depressed olfaction in workers (microsmia, 

anosmia) with average Mn exposures as low as 32 μg/m3, with increasing severity for higher 

exposures (Agency for Toxic Substances and Disease Registry [ATSDR], 2012; Blond and 

Netterström, 2007; Bowler et al., 2006, 2007, 2011; Chia et al., 1995; Iregren, 1990; 

Lucchini et al., 1995, 1999; Mergler et al., 1994; Roels et al., 1985, 1987, 1992, 1999, 

2012).

Environmental air-Mn concentrations in the United States vary significantly with location 

and proximity to emissions sources. Based on national air monitoring networks, the average 

background air-Mn concentration in urban areas is approximately 0.05 μg/m3 (U.S. 

Environmental Protection Agency [EPA], 2012a). EPA (1984) reported that rural air-Mn 

from 1965 to 1982 was approximately 6.25 times lower than urban air-Mn. Air-Mn in areas 

with Fe/Si-Mn (iron/silicomanganese) alloy smelters or other operations using Mn-

containing products can be several orders of magnitude higher than what has been reported 

in rural and urban environments (ATSDR, 2007, 2009, 2010, 2012; EPA, 1984, 2012a).

Two communities in eastern Ohio were identified with elevated measured concentrations of 

ambient air-Mn, one of which has the highest concentrations of measured air-Mn reported to 

the EPA Air Quality System (AQS) database (EPA, 2012a). Air-Mn in one community 

(Marietta) is predominantly released from a large Fe/Si-Mn alloy smelting plant (Eramet, 

Inc.), whereas in the other community (East Liverpool), it is released during the offloading, 
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grinding (for resizing), packaging, and storage of Mn-containing ore and alloy products at a 

metals storage and packaging facility (S.H. Bell Company). East Liverpool is approximately 

200 km north-northeast of Marietta, along the Ohio River (Figure 1).

Residents from each community were recruited to participate in a study examining 

neurological and neuropsychological impacts from chronic exposures to low levels of 

outdoor air-Mn. In support of this epidemiologic study, modeled estimates of outdoor air-

Mn concentrations were derived as surrogates of outdoor exposure for residents identified as 

study participants in the two communities. Dispersion modeling calibrated with measured 

data was used to estimate ambient air-Mn exposures for each study participant in the two 

towns. Both communities had over 10 yr of environmental total suspended particulate (TSP) 

sampling data generated between 1999 and 2013 that were analyzed for a number of toxic 

metals, including Mn. Only years where data met 75% completeness in both towns (2003–

2013) were used for statistical analyses.

The objective of this study was to estimate inhalation exposures by deriving residence-

specific outdoor air-Mn for two Ohio communities.

Materials and Methods

Stationary monitoring and fingerprinting of ambient TSP air-Mn

Twenty-four-hour TSP samples have been continuously collected and analyzed by the Ohio 

Environmental Protection Agency, Division of Air Pollution Control (Ohio EPA) in both 

communities since 2003 (Ohio EPA, 2012a, 2012b), although 10 months of continuous data 

were also collected in 2000 in East Liverpool. Stationary high-volume (“HiVol”) monitors 

used in these communities pull ambient air through an orifice at the top of the monitor at a 

volume rate of 1.13 m3/min, and particulate matter is deposited on a 203 × 254-mm glass 

fiber filter according to EPA Compendium Method IO 2.1 (EPA, 1999a). The concentration 

of TSP was reported as mass of particulate matter collected per cubic meter of air sampled 

(μg/m3) at sea level pressure (1 atm) and a temperature of 25 °C (ATSDR, 2007). Sample 

filters were analyzed for metals using inductively coupled plasma mass spectrometry (ICP-

MS) according to the EPA Compendium Method IO 3.5 (EPA, 1999b).

At both sites, 24-hr TSP filter samples are collected in community air monitoring stations 

every 6 days. These 24-hr samples are composited and analyzed to yield a monthly average 

air-Mn concentration (Ohio EPA, 2012a, 2012b). Because composite sample concentrations 

of Mn were elevated, in 2005 Ohio EPA began analyzing every filter from the East 

Liverpool Water Plant air monitoring station in individual 24-hr samples (discrete) as well 

as monthly composite samples to yield more information about the magnitude of Mn levels 

in community outdoor air (Ohio EPA, 2012b). Thus, data at this location were evaluated as 

both 24-hr and monthly averaged composite samples (ATSDR, 2010).

To understand the sources and toxicological implications of outdoor exposure to air-Mn, the 

EPA National Enforcement Investigations Center (NEIC) Laboratory analyzed Mn in 

particulate matter collected on 341 glass fiber HiVol 24-hr sample filters at stationary 

sampling locations in Marietta and East Liverpool for fingerprint analysis. These analyses 
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were carried out to yield information about how metals on the filters at various locations are 

related and compare with source samples, evaluate size distribution and morphology of 

collected particles, and determine the elemental abundance and chemical form of metals on 

the filters. For the purposes of these analyses, air filters were evaluated by using LA-ICP-

MS (laser ablation inductively coupled plasma mass spectrometry), SEM (scanning electron 

microscopy), and XRD (X-ray diffractometry) techniques (EPA, 2010a, 2010b).

Size fractions of particulate matter in East Liverpool air samples were also determined from 

collocated air monitors at the Water Plant operated by Ohio EPA and EPA. The monitors 

collected 24-hr TSP, PM10 (particulate matter with an aerodynamic diameter <10 μm), and 

PM2.5 (PM with an aerodynamic diameter <2.5 μm) samples for 3 months in summer of 

2011. These samples were collected during the period that health outcome data were 

collected in the community, and is the only sampling period that analyzed data in all three 

particle fractions.

To estimate exposures to respirable manganese, the TSP air-Mn concentration was 

multiplied by the fraction of air-Mn PM10 and PM2.5 as determined by fingerprinting 

analysis in Marietta (PM10 [0.83 or 83%] and PM2.5 [0.21 or 21%]), and by collocated 

monitoring data in East Liverpool (PM10 [0.35 or 35%] and PM2.5 [0.037 or 3.7%]).

Identification of modeling receptor points

Receptor points consisted of monitoring stations and the residential location of people 

recruited as part of two population studies that examined the potential health effects of 

outdoor air-Mn exposure in adult residents of Marietta, Ohio (n = 100), and East Liverpool, 

Ohio (n = 86). Study participants for each community were identified based on the 

likelihood of elevated exposures. The study participants were obtained by random 

recruitment in these areas and application of eligibility criteria as described for Marietta 

elsewhere (Bowler et al., 2012; Kim et al., 2011). Study subjects had neuropsychological 

tests and provided blood and serum samples for analysis. Data collection in these 

communities took place in 2009 and 2011 for Marietta and East Liverpool, respectively.

Model methodology

AERMOD (AMS/EPA Regulatory Model) is EPA’s preferred dispersion model for short-

range (less than 50 km) modeling analyses. The AERMOD modeling system consists of two 

preprocessors and a dispersion model (Cimorelli et al., 2005):

• A meteorological preprocessor (AERMOD Meteorological Preprocessor, 

AERMET) uses meteorological data and surface characteristics to develop 

planetary boundary layer parameters to create profiles of wind, turbulence, and 

temperature.

• A terrain preprocessor (AERMOD Terrain Preprocessor, AERMAP) uses gridded 

terrain data to determine the influence of elevation on the modeling domain, which 

allows AERMOD to calculate concentrations in either flat or complex terrain.

Colledge et al. Page 4

J Air Waste Manag Assoc. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• A steady-state plume model (AERMOD) designed to estimate impacts in urban or 

rural areas, in flat or complex terrain, for surface or elevated releases from multiple 

sources and multiple source types.

Land use/land cover data and 1 arc-sec (approximately 30 m) National Elevation Dataset for 

the study areas were acquired from the United States Geological Survey Seamless Server 

(USGS). Weather data were acquired from the nearest National Weather Service (NWS) 

stations for the two communities, which provided current hourly surface observations and 

upper air sounding data (National Climatic Data Center [NCDC]).

AERMOD was used to predict long-term (5-yr) average air-Mn concentrations at each 

modeled receptor. The model inputs for the two towns are as follows:

• Marietta. The nearest NWS surface station is located at the Mid-Ohio Valley 

Regional Airport in Parkersburg, West Virginia, approximately 8 km east-southeast 

of the facility. The nearest NWS upper air station with data for the same 5-yr 

period is at the Wright-Patterson Air Force Base in Dayton, Ohio, which is 

approximately 322 km west-northwest of the facility. Five consecutive years of 

surface and upper air meteorological data (1991–1995) were processed through 

AERMET (EPA, 2010c) for the Marietta modeling.

• East Liverpool. The nearest and most representative meteorological station is 

located at the Pittsburgh International Airport in Pittsburgh, Pennsylvania, which is 

approximately 40 km southeast of the facility. NCDC 1-min surface data, NWS 

hourly surface data, and NWS upper air data are all available for this station. Five 

consecutive years of data (2006–2010) were processed through AERMET (EPA, 

2012b) for the East Liverpool modeling.

Calculating exposure estimates

No emissions data were available for the metals packaging and storage facility in East 

Liverpool, thus an approach was used for estimating residential exposures that is scalable to 

measured data for both towns (herein referred to as “site-surface area emissions method”). 

To estimate outdoor residential air-Mn concentrations for each study subject residence, 

AERMOD was used to determine air-Mn concentration ratios of each residence to a 

reference air monitoring station (RAMS). In Marietta, the long-running Washington County 

Career Center (WCCC) monitor was used as the reference point, and in East Liverpool, the 

Maryland Avenue monitor was chosen to be the reference point. Reference point selection 

was based on how well measured data at each site predicted measurements at the other sites 

using the scaling and modeling method detailed below.

Unlike traditional dispersion modeling where detailed emissions data are available, the 

approach we are proposing assumes the entire surface area of the site is a single area 

emissions source. AERMOD was used to calculate 5-yr average air concentrations from a 

scalable unit emission rate of 1 gram per second (g/sec) over the full extent of the property 

of each facility. Dispersion modeling is linear, thus choosing a scalable unit emission rate 

facilitates calculating estimated outdoor concentrations from many on-site sources without 
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rerunning the model for each source. This procedure is recommended for dispersion 

modeling (EPA, 2005).

The unit emission rate was used for modeling purposes to calculate ratio relationships 

between estimated air-Mn concentrations at receptor points. Using this approach, the 

relationships of the modeled concentrations to each other and to a known reference point (in 

the form of estimated outdoor exposure ratios) can be used to calculate outdoor air-Mn 

concentrations at the residence of each study participant. In this instance, the known 

reference point was historical data recorded at the WCCC and Maryland Avenue outdoor air 

monitoring stations. AERMOD outputs for estimated outdoor air-Mn were scaled to actual 

measurements at the monitoring stations, yielding a relative fraction of air-Mn measured at 

the monitoring stations for all receptor points. For calculating residential outdoor exposure 

estimates, annual average air-Mn measurements were used to derive outdoor exposure 

concentrations from air-Mn ratios calculated using AERMOD modeling outputs. The 

method for calculating the estimated outdoor exposure of each receptor point was defined as

(1)

where R(air-Mn) is the outdoor exposure concentration of air-Mn for each receptor; AR is 

the receptor-specific AERMOD estimate of air-Mn derived from the unit emission rate of 1 

g/sec; RAMS is the AERMOD estimate of air-Mn derived from the unit emission rate at the 

reference air monitoring station; and C is the annual average air-Mn concentration measured 

at the reference air monitoring station.

Statistics

Raw data from area air monitors were obtained in Microsoft Excel files. Descriptive 

statistics, including confidence intervals, standard deviation, means, and quartiles were 

generated to compare measured and modeled data for each town. Annual and rolling 5-yr 

averages of ambient Mn concentrations were calculated for air monitoring sites where 

sufficient data were available to make a comparison with modeling estimates. Scaling 

factors were derived from measured levels of Mn in the PM10 and PM2.5 fractions of air-Mn 

TSP and were used to estimate residential exposures to respirable air-Mn. Descriptive 

statistics were generated to qualitatively compare measured and modeled data for each town, 

and exposure ratios and estimates were calculated using Microsoft Excel 2007.

Results

Stationary sampling data of TSP air-Mn

The statistical summary for the five Marietta air monitor locations (Table 1) shows that over 

the 10-yr sampling period (2003–2013), TSP air-Mn samples frequently exceeded the 

background values typical of ambient air-Mn in urban areas (EPA, 2012a). Across the five 

sampling sites, the arithmetic mean (AM) of the monthly composite air-Mn concentrations 

ranged from 0.11 to 0.39 μg/m3. For comparison, the Mn concentrations for eight 24-hr 
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samples collected on the facility property ranged from 0.46 to 1.90 μg/m3 and averaged 1.13 

μg/m3 (AM) and 1.04 μg/m3 (GM, geometric mean). In East Liverpool, the majority of 

monthly air-Mn concentrations also exceeded the national background average. Across the 

three sampling sites, the monthly AM ranged from 0.17 to 1.42 μg/m3 (Table 2). Air-Mn 

concentrations for 24-hr samples (Water Plant) ranged from 0.02 to 25.0 μg/m3 and 

averaged 1.50 μg/m3 (AM) and 0.56 μg/m3 (GM) (Table 2). TSP air-Mn in both 

communities exceeded the EPA reference concentration (RfC = 0.05 μg/m3; EPA, 2012c) 

and/or the ATSDR minimal risk level (MRL = 0.30 μg/m3; ATSDR, 2012) for at least one 

community monitoring site in nearly every reported measurement date during the 10-yr 

sampling period.

The SEM analyses used by NEIC for particle fingerprinting indicated that in Marietta, 77% 

of the ambient air-Mn particulate matter on the filters was predominately spherical and that 

the chemical form of Mn was generally Mn-oxide. The analysis also determined that 83% of 

TSP air-Mn met the World Health Organization (WHO, 1999) definition of respirable with 

Mn particles having an aerodynamic diameter (dae) ≤10 μm (PM10) and 21% with a dae ≤2.5 

μm (PM2.5). More than half of the Mn particles had a dae ranging from 3.4 to 4.6 μm. The 

high prevalence of fine Mn particles in Marietta is consistent with the fine metal dusts 

released from high-heat processes, such as smelting (EPA, 1996).

In 2011, collocated air monitors were sited and operated by Ohio EPA and EPA at the East 

Liverpool Water Plant location for collection of 24-hr TSP, PM10, and PM2.5 samples. From 

these samples, it was determined that TSP from East Liverpool has a greater percentage of 

nonrespirable Mn particles compared with Marietta TSP. In East Liverpool, 35% of TSP air-

Mn consisted of PM10 Mn, whereas only 3.7% of the TSP air-Mn was PM2.5 Mn. This is 

consistent with SEM fingerprinting analysis conducted by NEIC on a limited number of East 

Liverpool TSP filters, indicating that Mn particles in East Liverpool have a dae range of 4.4–

24.3 μm (EPA, 2010b). Compared with Marietta, a generally larger Mn particle fraction was 

expected given that emission points at the source facility in East Liverpool are general 

offloading, storage, and sizing/grinding operations. Estimated annual concentrations of 

PM10 Mn and PM2.5 Mn were generated using the ratios determined from fingerprinting and 

monitoring, and descriptive statistics were generated to compare residential outdoor 

exposure concentrations in the communities.

Residential outdoor exposure concentrations

Given that the East Liverpool plant did not have facility-specific Mn emissions data, the 

site-surface area emissions method was used for both towns to yield comparable estimates 

of exposure. Table 3 shows a comparison of average (AM) measured community sampling 

data for all monitoring sites (2003–2013) and modeled long-term outdoor exposure 

concentrations of TSP air-Mn in Marietta and East Liverpool. In Marietta, the modeled 

outdoor exposure concentrations ranged from 0.03 μg/m3 at the lowest receptor point to 1.61 

μg/m3 at the highest receptor point, with an average outdoor exposure concentration for all 

receptor points (n = 100) of 0.21 μg/m3 (AM) and 0.17 μg/m3 (GM). Across the sampling 

period in East Liverpool, the modeled outdoor exposure concentrations of TSP air-Mn 

ranged from 0.014 μg/m3 at the lowest exposed receptor point to 6.32 μg/m3 at the highest 
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exposed receptor point, with an overall average outdoor exposure concentration for all 

receptor points (n = 86) of 0.88 μg/m3 (AM) and 0.35 μg/m3 (GM). The statistical 

distribution of modeled TSP air-Mn were within the range of measured air-Mn outdoor 

exposure concentrations across all monitors located in each community (Table 3), which 

provides internal consistency for the calculation approach used in the present study.

Descriptive statistics were calculated for the fraction of modeled TSP air-Mn estimated to be 

PM10 and PM2.5 using scaling factors derived from the fingerprinting analyses for the 

Marietta study and collocated measurements for the East Liverpool study. Table 4 presents 

the statistical distribution of these estimates in Marietta (PM10: 0.18 μg/m3 [AM], range 

0.03–1.33 μg/m3; PM2.5: 0.05 μg/m3 [AM], range 0.007–0.34 μg/m3) and East Liverpool 

(PM10: 0.31 μg/m3 [AM], range 0.005–2.21 μg/m3; PM2.5: 0.03 μg/m3 [AM], range 0.001–

0.23 μg/m3). Results indicate that even though the TSP air-Mn levels in East Liverpool were 

generally higher than in Marietta, the Marietta residents have a higher exposure to respirable 

Mn particulate matter.

Method validation

Traditional dispersion modeling based on highly detailed facility-reported Mn emission 

estimates was performed to estimate study participant exposures in Marietta, which was 

detailed elsewhere (EPA, 2010c; Bowler et al., 2012). In summary, 255 tons per year of 

manganese was modeled as released via 15 point sources and 193 volume sources modeled 

from three overarching processes at the Eramet facility: (1) furnace emissions (melting, 

tapping, charging, hot metal transfer, feed system, slag handling, and casting); (2) the metal 

oxygen reduction process (including the pelletizer); and (3) materials handling processes 

(including conveying, loading/unloading, feed systems, hoppers, crushing, sizing, packing, 

milling, and bagging). These detailed emissions data were provided under a regulatory 

request for information to the EPA. This type of information is not readily available for 

general research outside of environmental enforcement agencies. In that evaluation, two 

long-term air-Mn monitoring stations in Marietta were useful for comparing modeled 5-yr 

averages with measured 5-yr averages: the WCCC monitoring station, which has been in 

operation since 2000, and the Harmar Village monitoring station, which has been in 

operation since 2007. The rolling 5-yr measured average for eight periods at the WCCC 

(0.16 μg/m3) compared well with traditional dispersion modeling 5-yr ambient outdoor air-

Mn estimates at the WCCC air monitoring site (0.14 μg/m3), suggesting that for Marietta the 

traditional dispersion model accurately predicts long-term ambient Mn concentrations at the 

WCCC monitoring site (Table 5). Harmar Village has two 5-yr periods from which to 

calculate a rolling 5-yr average. Comparison with the Harmar Village data is not ideal, since 

production at the Eramet plant has diminished in recent years, negatively biasing long-term 

averaging for prior years. Even still, the predicted dispersion modeling concentration at this 

location (0.16 μg/m3) and the measured average (0.11 μg/m3) of the 2007–2011 and 2008–

2012 periods were within an order of magnitude (Table 5) and would likely have been closer 

if measured data from years with greater air-Mn emissions had been available.

In Marietta, WCCC and Harmar Village had the greatest number of observations (n > 50) 

over the period 2003–2013. WCCC is the reference location and by default the site-surface 
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area emissions method estimates are perfectly correlated with the long-term air 

measurements at this site. Only Harmar Village in Marietta could be used to compare 

dispersion modeling based on emissions data with the site-surface area emissions method 

model estimates of air-Mn. In general, the modeled average of air-Mn as generated by the 

traditional dispersion model (0.16 μg/m3) was slightly more accurate than the site-surface 

area emissions method model estimate (0.18 μg/m3) at this location. Both modeling runs 

overestimated the actual measured concentration at the site, which was 0.11 μg/m3 over the 

2003–2013 sampling period. The number of observations for air-Mn measurements at the 

three other Marietta monitoring locations was too low at Blue Knob Road (n = 25), Boaz 

Waste Water Treatment Plant (n = 12), and Neal Elementary (n = 12) to yield a meaningful 

comparison between the facility-specific emissions model and site-surface area emissions 

method. The comparison of the traditional dispersion model with air measurements (model-

with-air measurements) and the facility-specific emissions model with the site-surface area 

emissions method (model-with-method) at the Harmar Village monitoring site indicates that 

the site-surface area emissions method yields reasonable exposure estimates.

Discussion

Public health concern regarding air-Mn exposures has been acknowledged since the 1970s 

and probably earlier (Joselow et al., 1978). Government regulation for anthropogenic 

sources stemming from these health concerns and epidemiologic research on long-term low-

level inhalation exposure to Mn in ambient air began in the United States with the 

publication of a EPA reference concentration (RfC) value of 0.050 μg/m3 in 1993 (EPA, 

2012c). RfC supporting documents initially focused on the potential risk of Mn emissions 

from mobile sources from the combustion of the gasoline additive methyl-cyclopentadienyl 

manganese tricarbonyl (MMT) (Davis et al., 1998). However, subsequent studies have 

suggested that industrial sources of air-Mn may have greater impacts to ambient air than 

motor vehicle exhaust from the combustion of gasoline containing MMT (ATSDR, 2012).

Existing studies have generally lacked personal air monitoring and completely rely on area 

monitoring to yield an understanding of study subject exposures. Those that did have 

personal air monitoring to estimate study subject exposures only had a few days of air 

sampling in the study. The site-surface area emissions method is proposed as a tool that 

yields long-term estimates of individual study subject exposures to address this research data 

gap.

Comparison with TSP air-Mn studies

The mean air-Mn concentrations measured in Marietta and East Liverpool are comparable to 

those reported in other studies documenting adverse health effects in Mn-exposed 

communities. The ranges of monthly composite TSP air-Mn averages across all sites 

sampled between 2003 and 2013 were 0.11–0.39 μg/m3 in Marietta and 0.17–1.50 μg/m3 in 

East Liverpool. A community study in Quebec that identified neuromotor and 

neuropsychological deficits and mood changes reported an average TSP air-Mn 

concentration of 0.022 μg/m3, with a range of 0.009–0.035 μg/m3 (Baldwin et al., 1999; 

Beuter et al., 1999; Bowler et al., 1999; Mergler et al., 1999). In this study, 4 days of 
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ambient air sampling were available to assess inhalation exposures, but personal exposure 

estimates were not available.

Comparison with PM10 air-Mn studies

Estimated PM10 air-Mn exposures derived from measured and modeled data yielded a long-

term average (AM) air-Mn concentration of 0.18 μg/m3 for Marietta and a long-term 

average (AM) air-Mn concentration of 0.31 μg/m3 for East Liverpool. Rodriguez-Agudelo et 

al. (2006) reported a statistically significant association between air-Mn concentrations and 

altered neuromotor function in Mexicans living at various distances from Mn mining 

operations where limited samples collected at 28 residences in eight communities had a 

mean PM10 air-Mn concentration of 0.42 μg/m3. Personal exposure estimates were not 

available to conduct regression analyses of motor test results; however, residents living 

nearest air monitors with elevated exposures were identified as having a higher risk of motor 

dysfunction. Lucchini et al. (2012) reported deficits in olfactory and motor function in 

Italian adolescents exposed to elevated levels of PM10 air-Mn from historical ferro/Mn alloy 

operations, with an average PM10 air-Mn concentration of 0.05 μg/m3 post facility closure 

and average soil Mn of 958 mg/kg. Although the latter study did not note associations 

between air-Mn levels and health outcomes, adverse health outcomes had statistically 

significant associations with soil Mn levels. This Italian study highlights the significance of 

deposition, particle transport, and distance from source in the understanding of cumulative 

exposures. However, multiple confounders complicate the interpretation of these results, 

including a limited personal air sampling duration of 24 hr.

Comparison with PM2.5 air-Mn studies

In Brazil, a reduction in cognitive function was noted in mothers and their children who 

were exposed to ferro/Mn alloy emissions where PM2.5 air-Mn averaged 0.15 μg/m3 

(Menezes-Filho et al., 2009, 2011), but only seven 24-hr samples were collected in a single 

location for this study. In the present study, estimated PM2.5 air-Mn based on modeled and 

measured data averaged 0.05 and 0.03 μg/m3 in Marietta and East Liverpool, respectively. 

Haynes et al. (2012) conducted a study in Marietta to evaluate the PM2.5 air-Mn exposure 

levels in 38 children by collecting limited personal (two consecutive days in 2009 and 2010) 

and stationary (three 48-hr samples/week during 2 months in 2009 and 4 months in 2010) 

PM2.5 air samples. The GM concentrations of PM2.5 air-Mn collected during the study were 

reported to be 0.008 μg/m3 for the personal samples and 0.011 μg/m3 for the stationary 

samples.

Limitations

A number of nonquantified parameters exist that may influence the extent to which outdoor 

air-Mn relates to exposures. Only outdoor residential concentration estimates could be 

derived from available data, which excludes other important contributions to overall 

exposures, such as outdoor-indoor transport of particles. The results of this analysis do not 

include parameters such as activity patterns, deposition, and residential and resuspended Mn 

from ambient sources; however, ratios derived from modeled long-term average air-Mn 

concentrations can be used for a surrogate of inhalation exposure.
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Emission rates are not likely to be consistent from year to year, so the assumption that any 

unit emission rate is constant and represents long-term emissions could result in over- or 

underpredicting ambient concentrations for individual years. However, the comparison of 

modeled and measured data (Table 3) suggests that the model creates reasonable estimates 

of long-term ambient concentrations. The site-surface area emissions method is limited by 

its lack of facility-specific emissions data but uses the same terrain and meteorological 

preprocessors as site-specific emissions modeling. However, comparison of the two 

modeling analyses performed for Marietta shows that most estimates are only slightly higher 

for the site-surface area emissions method compared with facility-specific emissions 

modeling. A similar comparison was not possible in East Liverpool given the lack of Mn 

emissions data from on-site sources. However, the ratio approach allows for the easy 

adjustment of ambient Mn concentrations to reflect measured ambient ranges of air-Mn. If 

topographic data and site-specific meteorological data are available, receptor concentration 

ratios should be sufficiently precise to allow calibration with measured data from a reference 

air monitoring station as was noted in Marietta.

Potential uncertainties with the meteorological data used in Marietta may exist as well. The 

hourly surface data used in the Marietta modeling is from 1991 to 1995, which was chosen 

at the time due to concerns about the collection and reporting of newer data. Although these 

concerns have now been addressed by the availability of 1-min surface data, these data were 

not readily available at the time of the Marietta modeling. The upper air data used in 

Marietta was from a station 322 km away; however, upper air data are regionally 

representative (as opposed to locally representative surface data). Additionally, complex 

terrain in the vicinity of both Marietta and East Liverpool can affect the predicted 

concentrations. Although terrain elevations were taken into account in the modeling, higher 

data resolution could affect estimated concentrations. Mn emissions calculations are 

impractical at the East Liverpool facility because of the highly variable loading, grinding, 

and packaging schedule, along with constantly changing production activities. Due to the 

lack of facility-specific emissions information in East Liverpool, the source parameters and 

emission rates for the facilities were based entirely on generic assumptions. For example, the 

unit emission rate of 1 g/sec from the entire facility was assumed to be emitted continuously 

over the modeled 5-yr period. Assuming a continuous emission rate is standard modeling 

procedure in instances where there is no basis for allocating variable emissions. Further, 

knowing the specific variability of emissions is much less important when calculating a 

long-term average. Since site-specific process emissions were not available and a unit 

emission rate was used, the facility’s ambient impact on annual average air-Mn 

concentrations may be over- or underpredicted. However, the use of measured data for 

model calibration minimized this limitation.

Conclusions

Exposure estimates can be derived directly from modeling facility emissions or can be 

extrapolated from other methods when emissions data are unavailable. In instances where 

limited outdoor monitoring data are available, modeling using generic emission rates can 

yield important information about the relative magnitude of exposure within a geographic 

area. Using measured and modeled data, outdoor exposure concentrations of ambient air-Mn 
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were calculated for individual study participants of two Ohio communities. This method for 

estimating personal exposures can prove useful in future studies to assess the relationship 

between adverse health outcomes and personal exposures to environmental pollutants, where 

the collection of such data is unfeasible and limited air monitoring data are available.

The methods outlined in this paper can be used to estimate outdoor air-Mn exposures at 

receptor points when personal monitoring data are limited. This approach may yield more 

useful ways to estimate exposure than assuming equal exposures to nearby monitoring 

stations or by collecting a few days of personal air sampling data. It reflects seasonal and 

temporal variability and can be used to produce individual chronic estimates of outdoor 

exposure for receptors. Further work should be conducted to examine relationships between 

indoor and outdoor Mn concentrations and to evaluate how macroenvironment Mn 

exposures are related to outdoor air-Mn exposure. Microenvironment exposure allocation to 

overall exposures would be invaluable to understanding the most important aspects of 

individual exposures at home, school, and in the workplace.
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Figure 1. 
Maps of air monitor and study subject locations, Marietta (left) and East Liverpool (right).
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Table 2

TSP air-Mna summary statistics for East Liverpool monitoring sites (January 2003–October 2013)

Monitoring Site
Water Plant (24 hr 

avg)b
Water Plant 

(monthly avg)
Port Authority 
(monthly avg)

Maryland Ave 
(monthly avg)

Distance to source facility 0.08 km 0.08 km 2 km 2.1 km

Number of observations 740 132 132 132

Min 0.02 0.10 0.02 0.01

Max 25.00 6.80 1.90 1.00

25th percentile 0.19 0.61 0.11 0.06

50th percentile 0.54 1.05 0.19 0.12

75th percentile 1.58 1.80 0.35 0.23

Arithmetic mean 1.50 1.42 0.27 0.17

Geometric mean 0.56 1.01 0.19 0.12

% observations >EPA RfC (0.05 μg/m3) 97.0 100.0 94.6 83.9

% observations >ATSDR MRL (0.30 μg/m3) 55.2 90.0 30.0 14.6

Notes:

a
Mn concentration in micrograms per cubic meter air (μg/m3).

b
Collected January 2005–October 2013
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Table 3

Distributions of TSP air-Mna: Comparison between estimates from the site-surface area emissions method 

model and the measured outdoor TSP air-Mn data for all monitoring sites in Marietta and East Liverpool, 

Ohio (2003–2013)

Parameter

Marietta East Liverpool

Modeled Measuredb Modeled Measuredb

Min 0.03 0.01–0.05 0.014 0.01–0.10

Max 1.61 0.27–1.50 6.32 1.00–6.80

25th percentile 0.13 0.05–0.16 0.20 0.06–0.61

50th percentile 0.17 0.10–0.31 0.31 0.12–1.05

75th percentile 0.20 0.14–0.53 1.05 0.23–1.80

Geometric mean 0.17 0.09–0.28 0.35 0.12–1.01

Arithmetic mean 0.21 0.11–0.39 0.88 0.17–1.42

Notes:

a
Mn concentration in micrograms per cubic meter air (μg/m3).

b
Calculated with monthly composite data.
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